Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enzymatic Functions for Toll/Interleukin-1 Receptor Domain Proteins in the Plant Immune System.

Identifieur interne : 000157 ( Main/Exploration ); précédent : 000156; suivant : 000158

Enzymatic Functions for Toll/Interleukin-1 Receptor Domain Proteins in the Plant Immune System.

Auteurs : Adam M. Bayless [États-Unis] ; Marc T. Nishimura [États-Unis]

Source :

RBID : pubmed:32582284

Abstract

Rationally engineered improvements to crop plants will be needed to keep pace with increasing demands placed on agricultural systems by population growth and climate change. Engineering of plant immune systems provides an opportunity to increase yields by limiting losses to pathogens. Intracellular immune receptors are commonly used as agricultural disease resistance traits. Despite their importance, how intracellular immune receptors confer disease resistance is still unknown. One major class of immune receptors in dicots contains a Toll/Interleukin-1 Receptor (TIR) domain. The mechanisms of TIR-containing proteins during plant immunity have remained elusive. The TIR domain is an ancient module found in archaeal, bacterial and eukaryotic proteins. In animals, TIR domains serve a structural role by generating innate immune signaling complexes. The unusual animal TIR-protein, SARM1, was recently discovered to function instead as an enzyme that depletes cellular NAD+ (nicotinamide adenine dinucleotide) to trigger axonal cell death. Two recent reports have found that plant TIR proteins also have the ability to cleave NAD+. This presents a new paradigm from which to consider how plant TIR immune receptors function. Here, we will review recent reports of the structure and function of TIR-domain containing proteins. Intriguingly, it appears that TIR proteins in all kingdoms may use similar enzymatic mechanisms in a variety of cell death and immune pathways. We will also discuss TIR structure-function hypotheses in light of the recent publication of the ZAR1 resistosome structure. Finally, we will explore the evolutionary context of plant TIR-containing proteins and their downstream signaling components across phylogenies and the functional implications of these findings.

DOI: 10.3389/fgene.2020.00539
PubMed: 32582284
PubMed Central: PMC7282519


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enzymatic Functions for Toll/Interleukin-1 Receptor Domain Proteins in the Plant Immune System.</title>
<author>
<name sortKey="Bayless, Adam M" sort="Bayless, Adam M" uniqKey="Bayless A" first="Adam M" last="Bayless">Adam M. Bayless</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nishimura, Marc T" sort="Nishimura, Marc T" uniqKey="Nishimura M" first="Marc T" last="Nishimura">Marc T. Nishimura</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32582284</idno>
<idno type="pmid">32582284</idno>
<idno type="doi">10.3389/fgene.2020.00539</idno>
<idno type="pmc">PMC7282519</idno>
<idno type="wicri:Area/Main/Corpus">000106</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000106</idno>
<idno type="wicri:Area/Main/Curation">000106</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000106</idno>
<idno type="wicri:Area/Main/Exploration">000106</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enzymatic Functions for Toll/Interleukin-1 Receptor Domain Proteins in the Plant Immune System.</title>
<author>
<name sortKey="Bayless, Adam M" sort="Bayless, Adam M" uniqKey="Bayless A" first="Adam M" last="Bayless">Adam M. Bayless</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nishimura, Marc T" sort="Nishimura, Marc T" uniqKey="Nishimura M" first="Marc T" last="Nishimura">Marc T. Nishimura</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in genetics</title>
<idno type="ISSN">1664-8021</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rationally engineered improvements to crop plants will be needed to keep pace with increasing demands placed on agricultural systems by population growth and climate change. Engineering of plant immune systems provides an opportunity to increase yields by limiting losses to pathogens. Intracellular immune receptors are commonly used as agricultural disease resistance traits. Despite their importance, how intracellular immune receptors confer disease resistance is still unknown. One major class of immune receptors in dicots contains a Toll/Interleukin-1 Receptor (TIR) domain. The mechanisms of TIR-containing proteins during plant immunity have remained elusive. The TIR domain is an ancient module found in archaeal, bacterial and eukaryotic proteins. In animals, TIR domains serve a structural role by generating innate immune signaling complexes. The unusual animal TIR-protein, SARM1, was recently discovered to function instead as an enzyme that depletes cellular NAD
<sup>+</sup>
(nicotinamide adenine dinucleotide) to trigger axonal cell death. Two recent reports have found that plant TIR proteins also have the ability to cleave NAD
<sup>+</sup>
. This presents a new paradigm from which to consider how plant TIR immune receptors function. Here, we will review recent reports of the structure and function of TIR-domain containing proteins. Intriguingly, it appears that TIR proteins in all kingdoms may use similar enzymatic mechanisms in a variety of cell death and immune pathways. We will also discuss TIR structure-function hypotheses in light of the recent publication of the ZAR1 resistosome structure. Finally, we will explore the evolutionary context of plant TIR-containing proteins and their downstream signaling components across phylogenies and the functional implications of these findings.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32582284</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-8021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in genetics</Title>
<ISOAbbreviation>Front Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Enzymatic Functions for Toll/Interleukin-1 Receptor Domain Proteins in the Plant Immune System.</ArticleTitle>
<Pagination>
<MedlinePgn>539</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fgene.2020.00539</ELocationID>
<Abstract>
<AbstractText>Rationally engineered improvements to crop plants will be needed to keep pace with increasing demands placed on agricultural systems by population growth and climate change. Engineering of plant immune systems provides an opportunity to increase yields by limiting losses to pathogens. Intracellular immune receptors are commonly used as agricultural disease resistance traits. Despite their importance, how intracellular immune receptors confer disease resistance is still unknown. One major class of immune receptors in dicots contains a Toll/Interleukin-1 Receptor (TIR) domain. The mechanisms of TIR-containing proteins during plant immunity have remained elusive. The TIR domain is an ancient module found in archaeal, bacterial and eukaryotic proteins. In animals, TIR domains serve a structural role by generating innate immune signaling complexes. The unusual animal TIR-protein, SARM1, was recently discovered to function instead as an enzyme that depletes cellular NAD
<sup>+</sup>
(nicotinamide adenine dinucleotide) to trigger axonal cell death. Two recent reports have found that plant TIR proteins also have the ability to cleave NAD
<sup>+</sup>
. This presents a new paradigm from which to consider how plant TIR immune receptors function. Here, we will review recent reports of the structure and function of TIR-domain containing proteins. Intriguingly, it appears that TIR proteins in all kingdoms may use similar enzymatic mechanisms in a variety of cell death and immune pathways. We will also discuss TIR structure-function hypotheses in light of the recent publication of the ZAR1 resistosome structure. Finally, we will explore the evolutionary context of plant TIR-containing proteins and their downstream signaling components across phylogenies and the functional implications of these findings.</AbstractText>
<CopyrightInformation>Copyright © 2020 Bayless and Nishimura.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bayless</LastName>
<ForeName>Adam M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Colorado State University, Fort Collins, CO, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nishimura</LastName>
<ForeName>Marc T</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Colorado State University, Fort Collins, CO, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Genet</MedlineTA>
<NlmUniqueID>101560621</NlmUniqueID>
<ISSNLinking>1664-8021</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NADase</Keyword>
<Keyword MajorTopicYN="N">NLR</Keyword>
<Keyword MajorTopicYN="N">TIR</Keyword>
<Keyword MajorTopicYN="N">Toll/interleukin-1 receptor</Keyword>
<Keyword MajorTopicYN="N">innate immunity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32582284</ArticleId>
<ArticleId IdType="doi">10.3389/fgene.2020.00539</ArticleId>
<ArticleId IdType="pmc">PMC7282519</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2005 Sep;17(9):2601-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2017 Apr;43:122-130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28092811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Jul 18;12(7):e1005769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27427964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 May;233(5):1041-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21279649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2017 Mar 22;93(6):1334-1343.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28334607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Oct;32(1):77-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12366802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12856-12861</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2015 Feb;20(2):250-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25451009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14879-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1063-1068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2019 Sep 6;431(19):3591-3605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31278906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E2053-E2062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28137883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2013 Jan;8(1):e22477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Apr 5;364(6435):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30948527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2019 Aug;50:82-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31063902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Aug 23;365(6455):793-799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31439792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 9;334(6061):1401-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22158818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Nov 27;20(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31783543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2009 Sep;17(9):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19716705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Oct 23;350(6259):404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26449474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 May 5;13(5):e1006376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28475615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2007 May;7(5):353-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17457343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Nov;9(11):2571-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2018 Apr;96(6):607-625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29582247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):1049-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22212278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Sep;1854(9):1132-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25534250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Aug 23;365(6455):799-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31439793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Apr 5;364(6435):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30948526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Dec 7;293(49):18933-18943</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30333228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Nov 2;408(6808):111-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11081518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 10;289(2):669-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Aug;24(8):918-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(6):e1002752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22685408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Jun;283:343-354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31128705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2020 Mar 3;59(8):933-942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32049506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Feb 15;10(1):772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30770836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Apr 18;344(6181):299-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24744375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Mar 2;359(6379):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29371424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Oct 28;291(44):22868-22880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27621317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Apr;222(2):938-953</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30585636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 18;9(4):e95118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24748046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Apr;20(4):533-546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30499216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2019 Dec 27;294(52):19831-19843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31672920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Dec 11;14(6):619-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24331460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Sep;25(9):1209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22670756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Jun 19;13(6):e1006442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28628666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>iScience. 2019 May 31;15:452-466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31128467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016 Jun 2;11(6):e1169358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27031653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Aug;23(4):441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10972870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Apr;29(4):618-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28302675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2019 Jan;24(1):9-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30446304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Sep 14;287(38):31633-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22822066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):267-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E2046-E2052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28159890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Apr;179(4):1298-1314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30765478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):157-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 7;284(32):21386-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Nov;172(3):1465-1479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27621425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Mar;213(4):1802-1817</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27861989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2020 May 14;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32409319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Oct 22;6(4):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 10;289(2):654-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24265315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Apr;222(2):966-980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30582759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Feb 3;287(6):4088-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22139835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 May 24;15(10):968-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15916955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 2;283(18):11861-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2020 Apr 16;16(4):e1007979</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32298382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 May;177(1):82-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29563207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Mar 17;9(3):200-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2019 Feb;105(2):363-375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30517972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Oct 09;9:1472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30356715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2011 Apr;35(4):461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21110998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Aug 10;546(2):408-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24786214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2019 Oct;31(10):2430-2455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31311833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10979-E10987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30373842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):566-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21166809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(2):188-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18397376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Oct 23;350(6259):399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26449475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 08;7:1850</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Oct;574(7780):691-695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31533127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2017 Nov 2;12(11):e1388977</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29035673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jul;162(3):1459-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23735504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2013 Oct 21;4:348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2017 Aug 4;55:257-286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28617654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Apr 24;348(6233):453-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25908823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine. 2008 Sep;43(3):342-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18706831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Jan 24;11(1):e1004945</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25617755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2018 Feb 5;28(3):421-430.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29395922</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Colorado">
<name sortKey="Bayless, Adam M" sort="Bayless, Adam M" uniqKey="Bayless A" first="Adam M" last="Bayless">Adam M. Bayless</name>
</region>
<name sortKey="Nishimura, Marc T" sort="Nishimura, Marc T" uniqKey="Nishimura M" first="Marc T" last="Nishimura">Marc T. Nishimura</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000157 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000157 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32582284
   |texte=   Enzymatic Functions for Toll/Interleukin-1 Receptor Domain Proteins in the Plant Immune System.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32582284" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020